
NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

Chapter 7

Using Triggers and Scheduled Events

ch07.indd   167 7/6/09   3:33:52 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 168	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 169

In addition to executing SQL statements and calling stored routines on an ad-hoc 
basis, MySQL 5.0 introduced database triggers, which allow these actions to be 
performed automatically by the server. This was not entirely unexpected—triggers 

and stored routines tend to go hand-in-hand, and both items were in demand from the 
user community—but it was a pleasant surprise to see MySQL 5.1 improve on this even 
further by introducing a new subsystem for scheduled events.

This event scheduler, together with MySQL’s support for triggers, provide a 
powerful framework for automating database operations, one that can come in handy 
when constructing complex or lengthy application workflows. This chapter builds on 
the material in the previous chapter, introducing you to MySQL’s implementation of 
triggers and scheduled events, and providing examples that demonstrate how they can 
be used in real-world applications. 

Understanding Triggers
A trigger, as the name suggests, refers to one or more SQL statements that are 
automatically executed (“triggered”) by the database server when a specific event 
occurs. Triggers can come in handy when automating database operations, and thereby 
reduce some of the load carried by an application. Common examples of triggers in use 
include:

Logging changes in data•	

Creating “snapshots” of data prior to a change (for undo functionality) •	

Performing automatic calculations•	

Changing data in one table in response to a change in another•	

A trigger is always associated with a particular table, and it can be set to execute 
either before or after the trigger event takes place. MySQL currently supports three 
types of trigger events: INSERTs, UPDATEs, and DELETEs.

A Simple Trigger
To understand how triggers work, let’s consider a simple example: logging changes to 
the airline’s flight database. Let’s suppose that every time an administrator adds a new 
flight to the database, this action should be automatically logged to a separate table, 
along with the administrator’s MySQL username and the current time. With a trigger, 
this is easy to do:

mysql> CREATE TRIGGER flight_ai 
    ->   AFTER INSERT ON flight 
    ->   FOR EACH ROW 
    ->     INSERT INTO log (ByUser, Note, EventTime) 
    ->     VALUES (CURRENT_USER(), 'Record added: flight', NOW()); 
Query OK, 0 rows affected (0.04 sec)

To define a trigger, MySQL offers the CREATE TRIGGER command. This command 
must be followed by the trigger name and the four key trigger components, namely:

ch07.indd   168 7/6/09   3:33:52 PM



	 168	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 169

PART I
PART I

The trigger •	 event, which can be any one of INSERT, UPDATE, or DELETE

The trigger •	 activation time, which can be either AFTER the event or BEFORE it

The trigger’s •	 subject table, which is the table the trigger should be attached to

The trigger •	 body, which contains the SQL statements to be executed

Note  To create a trigger, a user must have the TRIGGER privilege (in MySQL 5.1.6+) or the 
SUPER privilege (in MySQL 5.0.x). Privileges are discussed in greater detail in Chapter 11.

These components are illustrated in the previous example, which creates a trigger 
named flight_ai. The FOR EACH ROW clause in the trigger ensures that it is activated 
after every operation that adds a new record to the flight table and it, in turn, adds a 
record to the log table recording the operation. To see this trigger in action, try adding a 
new record to the flight table, as shown:

mysql> INSERT INTO flight (FlightID, RouteID, AircraftID) 
    -> VALUES (900, 1141, 3452); 
Query OK, 1 row affected (0.08 sec) 
mysql> SELECT * FROM log\G 
*************************** 1. row ******************* 
 RecordID: 2 
   ByUser: root@localhost 
     Note: Record added: flight 
EventTime: 2009-01-09 15:40:46 
1 row in set (0.00 sec)

It’s easy to add another trigger, this one to log record deletions. Here’s an example:

mysql> CREATE TRIGGER flight_ad 
    ->   AFTER DELETE ON flight 
    ->   FOR EACH ROW 
    ->     INSERT INTO log (ByUser, Note, EventTime) 
    ->     VALUES (CURRENT_USER(), 'Record deleted: flight', NOW()); 
Query OK, 0 rows affected (0.08 sec)

And now, when you delete a record, that operation should also be recorded in the 
log table:

mysql> DELETE FROM flight 
    -> WHERE flightid = 900; 
Query OK, 1 row affected (0.01 sec) 
mysql> SELECT * FROM log\G 
*************************** 1. row *************** 
 RecordID: 3 
   ByUser: root@localhost 
     Note: Record deleted: flight 
EventTime: 2009-01-09 15:42:42 
*************************** 2. row *************** 
 RecordID: 2 

ch07.indd   169 7/6/09   3:33:52 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 170	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 171

   ByUser: root@localhost 
     Note: Record added: flight 
EventTime: 2009-01-09 15:40:46 
2 rows in set (0.00 sec)

How do I Name My Triggers?
Peter Gulutzan has suggested an easy-to-understand and consistent naming 
scheme for triggers in his article at http://dev.mysql.com/tech-resources/articles/
mysql-triggers.pdf, which is also followed in this chapter: Name each trigger with 
the name of the table to which it is linked, with an additional suffix consisting of 
the letters a (for “after”) or b (for “before”), and i (for “insert”), u (for “update”) 
and d (for “delete”). So, for example, an AFTER INSERT trigger on the pax table 
would be named pax_ai.

The main body of the trigger is not limited only to single SQL statements; it can 
contain any of MySQL’s programming constructs, including variable definitions, 
conditional tests, loops, and error handlers. BEGIN and END blocks are mandatory when 
the procedure body contains these complex control structures. In all other cases (such 
as the previous example, which contains only a single INSERT), they are optional. 

Note  To avoid ambiguity, MySQL does not allow more than one trigger with the same trigger 
event and trigger time per table. This means that, for example, a table cannot have two 
AFTER INSERT triggers (although it can have separate BEFORE INSERT and AFTER 
INSERT triggers). Or, to put it another way, a table can have, at most, six possible triggers.

To remove a trigger, use the DROP TRIGGER command with the trigger name as 
argument:

mysql> DROP TRIGGER flight_ad; 
Query OK, 0 rows affected (0.03 sec)

Tip  Dropping a table automatically removes all triggers associated with it.

To view the body of a specific trigger, use the SHOW CREATE TRIGGER command 
with the trigger name as argument. Here’s an example:

mysql> SHOW CREATE TRIGGER flight_ad\G 
*************************** 1. row *************************** 
               Trigger: flight_ad 
              sql_mode: STRICT_TRANS_TABLES 
SQL Original Statement: CREATE DEFINER=`root`@`localhost`  
  TRIGGER flight_ad 
  AFTER DELETE ON flight 
  FOR EACH ROW 

ch07.indd   170 7/6/09   3:33:52 PM



	 170	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 171

PART I
PART I

    INSERT INTO log (ByUser, Note, EventTime) 
    VALUES (CURRENT_USER(), 'Record deleted: flight', NOW()); 
  character_set_client: latin1 
  collation_connection: latin1_swedish_ci 
    Database Collation: latin1_swedish_ci 
1 row in set (0.00 sec)

To view a list of all triggers on the server, use the SHOW TRIGGERS command. You 
can filter the output of this command with a WHERE clause, as shown:

mysql> SHOW TRIGGERS FROM db1 WHERE `Table` = 'flight'\G 
*************************** 1. row *************************** 
             Trigger: flight_ai 
               Event: INSERT 
               Table: flight 
           Statement: INSERT INTO log (ByUser, Note, EventTime) 
   VALUES (CURRENT_USER(), 'Record added: flight', NOW()); 
              Timing: AFTER 
             Created: NULL 
            sql_mode: STRICT_TRANS_TABLES 
             Definer: root@localhost 
character_set_client: latin1 
collation_connection: latin1_swedish_ci 
  Database Collation: latin1_swedish_ci 
*************************** 2. row *************************** 
             Trigger: flight_ad 
               Event: DELETE 
               Table: flight 
           Statement: INSERT INTO log (ByUser, Note, EventTime) 
   VALUES (CURRENT_USER(), 'Record deleted: flight', NOW()); 
              Timing: AFTER 
             Created: NULL 
            sql_mode: STRICT_TRANS_TABLES 
             Definer: root@localhost 
character_set_client: latin1 
collation_connection: latin1_swedish_ci 
  Database Collation: latin1_swedish_ci 
2 rows in set (0.00 sec)

Trigger Security
The CREATE TRIGGER command supports an additional DEFINER clause, which 
specifies the user account whose privileges should be considered when executing the 
trigger. For the trigger to execute successfully, this user should have all the privileges 
necessary to perform the statements listed in the trigger body. By default, MySQL sets 
the DEFINER value to the user who created the trigger. 

Here’s an example:

mysql> CREATE DEFINER = 'jack@example.com' 
    -> TRIGGER flight_ad 

ch07.indd   171 7/6/09   3:33:52 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 172	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 173

    ->   AFTER DELETE ON flight 
    ->   FOR EACH ROW 
    ->     INSERT INTO log (ByUser, Note, EventTime) 
    ->     VALUES (USER(), 'Record deleted: flight', NOW()); 
Query OK, 0 rows affected (0.08 sec)

Which is Better: a BEFORE trigger or an AFTER trigger?
There’s no hard-and-fast rule as to which trigger is “better”—it’s like asking which 
flavor of ice cream is best. But if you’re stuck trying to decide whether your code 
should run before or after a DML operation, the following rule of thumb (posted 
by Scott White in the online MySQL manual, at http://dev.mysql.com/doc/
refman/5.0/en/create-trigger.html) might help: “Use BEFORE triggers primarily for 
constraints or rules, not transactions. Stick with AFTER triggers for most other 
operations, such as inserting into a history table or updating a denormalization.”

Triggers and Old/New Values
Within the body of a trigger, it’s possible to reference field values from both before and 
after the trigger event by prefixing the field name with the OLD and NEW keywords. This 
means that, for example, if you have an UPDATE trigger on a table, the SQL statements 
within the trigger body can access both the existing field values (OLD) and the new, 
incoming field values (NEW).

To illustrate this, consider the next example, which logs changes to the flight table 
and specifies the changed values as part of the log message:

mysql> DELIMITER // 
mysql> CREATE TRIGGER flight_au 
    -> AFTER UPDATE ON flight 
    -> FOR EACH ROW 
    ->   BEGIN 
    ->     DECLARE str VARCHAR(255) DEFAULT ''; 
    ->     IF OLD.FlightID != NEW.FlightID THEN 
    ->       SET str = CONCAT(str, 'FlightID ', 
    ->         OLD.FlightID, ' -> ', NEW.FlightID, ' '); 
    ->     END IF; 
    ->     IF OLD.RouteID != NEW.RouteID THEN 
    ->       SET str = CONCAT(str, 'RouteID ', 
    ->         OLD.RouteID, ' -> ', NEW.RouteID, ' '); 
    ->     END IF; 
    ->     IF OLD.AircraftID != NEW.AircraftID THEN 
    ->       SET str = CONCAT(str, 'AircraftID ', 
    ->         OLD.AircraftID, ' -> ', NEW.AircraftID); 
    ->     END IF; 
    ->     INSERT INTO log (ByUser, Note, EventTime) 

ch07.indd   172 7/6/09   3:33:52 PM



	 172	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 173

PART I
PART I

    ->     VALUES (USER(), 
    ->       CONCAT('Record updated: flight: ', str), 
    ->       NOW()); 
    ->   END// 
Query OK, 0 rows affected (0.00 sec)

In this example, the prefix OLD returns the pre-update value of the corresponding 
field, while the prefix NEW returns the post-update value of the field. Within the trigger 
body, IF conditional tests are used to check if the old and new values are the same; if 
not, the field is flagged and its old and new values are inserted as part of the log string.

OLD and NEW values typically appear together only in UPDATE triggers. This is only 
logical: OLD values are neither relevant nor supported in the case of INSERT triggers, 
while the same applies to NEW values for DELETE triggers.

Triggers and More Complex Applications
Let’s look at another, more complex example. Consider that an airline has a limited 
inventory of seats per flight and flight class, and the seat inventory for each flight needs 
to be updated on a continual basis as passengers book their flights. Consider also that 
the airline would like to automatically increase the price of tickets as the flight begins 
to fill up in order to increase its profit margin.

Figure 7-1 explains how this information is stored in the example database. 

Passenger records for each flight and class combination are recorded in the •	
pax table.

The live seat inventory for a particular flight-and-class combination can be •	
found in the stats table. 

The •	 pax and stats tables are linked to each other by means of the common 
FlightID, FlightDate, and ClassID fields. 

The maximum number of seats possible in each class of a particular flight, •	
together with the base (starting) ticket price, is recorded in the flightclass table. 

So, for example, flight #652 which operates on the Orly-Budapest route, has a 
maximum of 10 seats available in Gold class at a base price of $200 and 20 seats 
available in Silver class at a base price of $100.

mysql> SELECT FlightID, ClassID, MaxSeats, BasePrice 
    -> FROM flightclass WHERE FlightID=652; 
+----------+---------+----------+-----------+ 
| FlightID | ClassID | MaxSeats | BasePrice | 
+----------+---------+----------+-----------+ 
|      652 | 2       |       10 |       200 | 
|      652 | 3       |       20 |        50 | 
+----------+---------+----------+-----------+ 
2 rows in set (0.00 sec)

ch07.indd   173 7/6/09   3:33:53 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 174	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 175

Looking into the stats table for this flight on January, 20, 2009, we see that there are 
currently 9 seats available in Gold class and 18 seats available in Silver class—that is, 
three passengers are currently scheduled to fly on that day.

mysql> SELECT ClassID, CurrSeats, CurrPrice 
    -> FROM stats WHERE FlightID=652 
    -> AND FlightDate = '2009-01-20'; 
+---------+-----------+-----------+ 
| ClassID | CurrSeats | CurrPrice | 
+---------+-----------+-----------+ 
|       2 |         9 |       200 | 
|       3 |        18 |        50 | 
+---------+-----------+-----------+ 
2 rows in set (0.00 sec)

With this information at hand, it becomes possible to construct a trigger that 
automatically handles updating the live seat inventory in the stats table. Every time a 
passenger books a flight, a new record is inserted into the pax table. So an AFTER 
INSERT trigger on this table can be used to automatically reduce the seat inventory in 
the stats table by 1 on every record insertion.

RecordID FlightID FlightDate ClassID PaxName PaxRef
197
198
199

652
652
652

1/20/2009
1/20/2009
1/20/2009

2
3
3

Henry Rabbit
Harry Hippo
Henrietta Hippo

TG75850303
TG75847493
TG75847493

ClassID ClassName
1
2
3

Platinum
Gold
Silver

FlightID ClassID MaxSeats BasePrice
535
535
652

2
3
2

50
150
10

200
50

200
652
876
876

3
2
3

20
85

100

50
250
35

876 1 10 300

FlightID FlightDate ClassID CurrSeats CurrPrice
652
652

1/20/2009
1/20/2009

2
3

9
18

200
50

Figure 7-1  Passenger, flight, and seat information

ch07.indd   174 7/6/09   3:33:55 PM



	 174	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 175

PART I
PART I

Here’s the code:

mysql> DELIMITER // 
mysql> CREATE TRIGGER pax_ai 
    -> AFTER INSERT ON pax 
    -> FOR EACH ROW 
    ->   BEGIN 
    ->     UPDATE stats AS s 
    ->       SET s.CurrSeats = s.CurrSeats - 1 
    ->       WHERE s.FlightID = NEW.FlightID 
    ->       AND s.FlightDate = NEW.FlightDate 
    ->       AND s.ClassID = NEW.ClassID; 
    ->   END// 
Query OK, 0 rows affected (0.03 sec)

Similarly, every time a cancellation occurs, the corresponding record will be deleted 
from the passenger manifest, and an AFTER DELETE trigger can be used to simultaneously 
increase the seat inventory by 1:

mysql> DELIMITER // 
mysql> CREATE TRIGGER pax_ad 
    -> AFTER DELETE ON pax 
    -> FOR EACH ROW 
    ->   BEGIN 
    ->     UPDATE stats AS s 
    ->       SET s.CurrSeats = s.CurrSeats + 1 
    ->       WHERE s.FlightID = OLD.FlightID 
    ->       AND s.FlightDate = OLD.FlightDate 
    ->       AND s.ClassID = OLD.ClassID; 
    ->   END// 
Query OK, 0 rows affected (0.01 sec)

See this in action by inserting a new passenger record into the pax table and then 
reviewing the stats table:

mysql> INSERT INTO pax 
    -> (FlightID, FlightDate, ClassID, PaxName, PaxRef) 
    -> VALUES (652, '2009-01-20', 3,  
    -> 'Igor Iguana', 'TR58304888'); 
Query OK, 1 row affected (0.01 sec) 
mysql> SELECT ClassID, CurrSeats, CurrPrice 
    -> FROM stats WHERE FlightID=652 
    -> AND FlightDate = '2009-01-20'; 
+---------+-----------+-----------+ 
| ClassID | CurrSeats | CurrPrice | 
+---------+-----------+-----------+ 
|       2 |         9 |       200 | 
|       3 |        17 |        50 | 
+---------+-----------+-----------+ 
2 rows in set (0.00 sec)

ch07.indd   175 7/6/09   3:33:55 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 176	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 177

And if you remove a passenger record, the seat inventory should tick upwards by one.
Automatically increasing (or decreasing) the ticket price as the seat count reduces 

(or increases) can be accomplished by defining different “slabs” of seat utilization and 
adjusting the current price upwards or downwards by a fixed percentage depending 
on the current slab. So, for example, the airline might decide that once 25 percent of the 
seats in a class are sold, the price should automatically increase by 50 percent. Similarly, 
once 75 percent of the seats are sold, the price should once again increase by 50 percent. 

Adding this logic entails modifying the previously defined triggers, as shown:

mysql> DELIMITER // 
mysql> CREATE TRIGGER pax_ai 
    -> AFTER INSERT ON pax 
    -> FOR EACH ROW 
    ->   BEGIN 
    ->     DECLARE u FLOAT DEFAULT 0; 
    ->     DECLARE cs, ms, bp, cp INT DEFAULT 0; 
    ->     UPDATE stats AS s 
    ->       SET s.CurrSeats = s.CurrSeats - 1 
    ->       WHERE s.FlightID = NEW.FlightID 
    ->       AND s.FlightDate = NEW.FlightDate 
    ->       AND s.ClassID = NEW.ClassID; 
    ->     SELECT s.CurrSeats, s.CurrPrice INTO cs, cp 
    ->       FROM stats AS s 
    ->       WHERE s.FlightID = NEW.FlightID 
    ->       AND s.FlightDate = NEW.FlightDate 
    ->       AND s.ClassID = NEW.ClassID; 
    ->     SELECT fc.MaxSeats, fc.BasePrice INTO ms, bp 
    ->       FROM flightclass AS fc 
    ->       WHERE fc.FlightID = NEW.FlightID 
    ->       AND fc.ClassID = NEW.ClassID; 
    ->     SET u = 1 - (cs/ms); 
    ->     IF (u >= 0.25 AND u < 0.75 AND cp != ROUND(bp * 1.5)) THEN 
    ->       UPDATE stats AS s 
    ->         SET s.CurrPrice = ROUND(bp * 1.5) 
    ->         WHERE s.FlightID = NEW.FlightID 
    ->         AND s.FlightDate = NEW.FlightDate 
    ->         AND s.ClassID = NEW.ClassID; 
    ->     END IF; 
    ->     IF (u >= 0.75 AND cp != ROUND(bp * 2.25)) THEN 
    ->       UPDATE stats AS s 
    ->         SET s.CurrPrice = ROUND(bp * 2.25) 
    ->         WHERE s.FlightID = NEW.FlightID 
    ->         AND s.FlightDate = NEW.FlightDate 
    ->         AND s.ClassID = NEW.ClassID; 
    ->     END IF; 
    ->   END// 
Query OK, 0 rows affected (0.00 sec)

ch07.indd   176 7/6/09   3:33:55 PM



	 176	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 177

PART I
PART I

This looks complicated, but it really isn’t! The trigger begins by first updating the seat 
inventory and then retrieving the current seat availability, the maximum seats possible, 
the current price, and the base price for that particular flight/class combination. It then 
calculates the seat utilization ratio and updates the current price, depending on whether 
this ratio is between 25 and 75 percent or greater than 75 percent.

It’s also necessary to update the price if passengers cancel their reservation. Here’s 
the revised AFTER DELETE trigger:

mysql> DELIMITER // 
mysql> CREATE TRIGGER pax_ad 
    -> AFTER DELETE ON pax 
    -> FOR EACH ROW 
    ->   BEGIN 
    ->     DECLARE u FLOAT DEFAULT 0; 
    ->     DECLARE cs, ms, bp, cp INT DEFAULT 0; 
    ->     UPDATE stats AS s 
    ->       SET s.CurrSeats = s.CurrSeats + 1 
    ->       WHERE s.FlightID = OLD.FlightID 
    ->       AND s.FlightDate = OLD.FlightDate 
    ->       AND s.ClassID = OLD.ClassID; 
    ->     SELECT s.CurrSeats, s.CurrPrice INTO cs, cp 
    ->       FROM stats AS s 
    ->       WHERE s.FlightID = OLD.FlightID 
    ->       AND s.FlightDate = OLD.FlightDate 
    ->       AND s.ClassID = OLD.ClassID; 
    ->     SELECT fc.MaxSeats, fc.BasePrice INTO ms, bp 
    ->       FROM flightclass AS fc 
    ->       WHERE fc.FlightID = OLD.FlightID 
    ->       AND fc.ClassID = OLD.ClassID; 
    ->     SET u = 1 - (cs/ms); 
    ->     IF (u < 0.25 AND cp != bp) THEN 
    ->       UPDATE stats AS s 
    ->         SET s.CurrPrice = bp 
    ->         WHERE s.FlightID = OLD.FlightID 
    ->         AND s.FlightDate = OLD.FlightDate 
    ->         AND s.ClassID = OLD.ClassID; 
    ->     END IF; 
    ->     IF (u >= 0.25 AND u < 0.75 AND cp != ROUND(bp * 1.5)) THEN 
    ->       UPDATE stats AS s 
    ->         SET s.CurrPrice = ROUND(bp * 1.5) 
    ->         WHERE s.FlightID = OLD.FlightID 
    ->         AND s.FlightDate = OLD.FlightDate 
    ->         AND s.ClassID = OLD.ClassID; 
    ->     END IF; 
    ->     IF (u >= 0.75 AND cp != ROUND(bp * 2.25)) THEN 
    ->       UPDATE stats AS s 
    ->         SET s.CurrPrice = ROUND(bp * 2.25) 
    ->         WHERE s.FlightID = OLD.FlightID 

ch07.indd   177 7/6/09   3:33:55 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 178	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 179

    ->         AND s.FlightDate = OLD.FlightDate 
    ->         AND s.ClassID = OLD.ClassID; 
    ->     END IF; 
    ->   END// 
Query OK, 0 rows affected (0.00 sec)

Let’s try it by booking two passengers in Gold class on that flight:

mysql> INSERT INTO pax 
    -> (FlightID, FlightDate, ClassID, PaxName, PaxRef) 
    -> VALUES (652, '2009-01-20', 2, 
    -> 'Gerry Giraffe', 'TR75950888'); 
Query OK, 1 row affected (0.01 sec) 
mysql> INSERT INTO pax 
    -> (FlightID, FlightDate, ClassID, PaxName, PaxRef) 
    -> VALUES (652, '2009-01-20', 2, 
    -> 'Adam Anteater', 'TR88404015'); 
Query OK, 1 row affected (0.00 sec)

Since 7 of the 10 available seats are now booked, the 25 percent threshold has been 
crossed and a price rise should automatically occur. Look in the stats table, and you’ll see 
that the ticket price for the flight in Gold class has risen by 50 percent, from $200 to $300.

mysql> SELECT ClassID, CurrSeats, CurrPrice 
    -> FROM stats WHERE FlightID=652 
    -> AND FlightDate = '2009-01-20'; 
+---------+-----------+-----------+ 
| ClassID | CurrSeats | CurrPrice | 
+---------+-----------+-----------+ 
|       2 |         7 |       300 | 
|       3 |        17 |        50 | 
+---------+-----------+-----------+ 
2 rows in set (0.01 sec)

Triggers and Constraints
Now, if you’re sharp-eyed, you’ll have noticed that there’s a glaring problem in the 
previous example: It’s possible to keep adding passengers until the seat inventory falls 
below zero. While this is theoretically possible in one sense (a negative seat inventory 
might well be considered overbooking, a fairly common airline practice these days), 
let’s assume that, for our airline at least, showing a negative value for seats available on 
a flight is a Bad Thing.

This occurs, quite naturally, because while the trigger in the previous example is 
pretty good at increasing and decreasing the seat inventory in response to passenger 
bookings and cancellations, it doesn’t include any checks that prevent the available seat 
count falling below zero or rising above the maximum number of seats specified for 
that class. To make things even more…ahem, airtight, the trigger should be updated to 
check for these upper and lower limits, and allow the INSERT into the pax table only if 
these range constraints are not violated.

ch07.indd   178 7/6/09   3:33:55 PM



	 178	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 179

PART I
PART I

And therein lies the problem. Unlike Oracle, which allows you to abort a trigger 
with the RAISE APPLICATION ERROR statement, MySQL does not currently offer any 
mechanism to abort a trigger or to raise an error in the event that a user-specified 
constraint is not met. This is a key limitation of MySQL’s current implementation of 
triggers, and has generated a large amount of discussion in the MySQL user forums…
as well as a creative workaround!

The fundamental principle of this workaround is simple: Deliberately generate a 
MySQL error by performing an illegal operation, thereby forcing MySQL to abort 
execution of the trigger. There are various ways in which this can be done, including:

Inserting a value into a nonexistent field•	

Inserting a •	 NULL value into a field with the NOT NULL constraint

Calling a nonexistent stored routine•	

The end result of all these operations is the same: a fatal error, which will cause MySQL 
to terminate execution of the statement causing the error. If this statement is enclosed 
within a BEFORE trigger, the resulting error will force MySQL to abort trigger execution, as 
well as the INSERT, UPDATE, or DELETE statement that is supposed to follow it.

To illustrate this in action, consider the following trivial example: a trigger that only 
allows new airports to be registered in the airport table if they have at least three runways:

mysql> DELIMITER // 
mysql> CREATE TRIGGER airport_bi 
    -> BEFORE INSERT ON airport 
    -> FOR EACH ROW 
    -> BEGIN 
    ->   IF NEW.NumRunways < 3 THEN 
    ->     CALL i_dont_exist; 
    ->   END IF; 
    -> END// 
Query OK, 0 rows affected (0.06 sec)

Now, try it out:

mysql> INSERT INTO airport 
    -> (AirportID, AirportCode, AirportName, 
    -> CityName, CountryCode, NumRunways, 
    -> NumTerminals) VALUES (207, 'LTN', 
    -> 'Luton Airport', 'London', 'GB', 
    -> 2,1); 
ERROR 1305 (42000): PROCEDURE db1.i_dont_exist does not exist

In this case, because the specified constraint in the BEFORE INSERT trigger isn’t 
met, a deliberate error is generated, which causes the failure of the INSERT altogether. 
On the other hand, if you were to try the same query specifying three or more runways, 
the INSERT statement would execute successfully. 

ch07.indd   179 7/6/09   3:33:55 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 180	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 181

Now, let’s use a couple of BEFORE triggers on the pax table to enforce the constraints 
discussed at the beginning of this section:

mysql> DELIMITER // 
mysql> CREATE TRIGGER pax_bi 
    -> BEFORE INSERT ON pax 
    -> FOR EACH ROW 
    -> BEGIN 
    ->   DECLARE cs INT DEFAULT 0; 
    ->   SELECT s.CurrSeats INTO cs 
    ->     FROM stats AS s 
    ->     WHERE s.FlightID = NEW.FlightID 
    ->     AND s.FlightDate = NEW.FlightDate 
    ->     AND s.ClassID = NEW.ClassID; 
    ->   IF cs <= 0 THEN 
    ->     SET @trigger_error = 'No seats available'; 
    ->     CALL i_dont_exist(); 
    ->   END IF; 
    -> END// 
Query OK, 0 rows affected (0.01 sec) 
mysql> CREATE TRIGGER pax_bd 
    -> BEFORE DELETE ON pax 
    -> FOR EACH ROW 
    -> BEGIN 
    ->   DECLARE cs, ms INT DEFAULT 0; 
    ->   SELECT s.CurrSeats INTO cs 
    ->     FROM stats AS s 
    ->     WHERE s.FlightID = OLD.FlightID 
    ->     AND s.FlightDate = OLD.FlightDate 
    ->     AND s.ClassID = OLD.ClassID; 
    ->   SELECT fc.MaxSeats INTO ms 
    ->     FROM flightclass AS fc 
    ->     WHERE fc.FlightID = OLD.FlightID 
    ->     AND fc.ClassID = OLD.ClassID; 
    ->   IF cs >= ms THEN 
    ->     SET @trigger_error = 'Cannot increase seat count'; 
    ->     CALL i_dont_exist(); 
    ->   END IF; 
    -> END// 
Query OK, 0 rows affected (0.01 sec)

In this case, whenever one of the range constraints is violated and the trigger 
aborts, a message indicating the cause of the error will be placed in the @trigger_
error session variable. This suggestion (which must be again credited to the MySQL 
forum, which developed the workaround in the first place) allows applications to 
access a human-readable error message and display it to the user.

ch07.indd   180 7/6/09   3:33:56 PM



	 180	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 181

PART I
PART I

Understanding Scheduled Events
The triggers discussed in the previous section are written for, and activated by, a 
particular type of event, such as a new record insertion or modification. However, 
MySQL 5.1 also supports a slightly different approach to database automation in the 
form of scheduled events. 

Scheduled events, as the name suggests, are triggered at particular times. They 
provide a framework to perform one or more SQL operations on a time-based schedule. 
Scheduled events, like triggers, are always associated with a particular table, and can 
be set to execute either once or repeatedly at predefined intervals. This can come in 
handy for tasks that need to take place periodically, such as log rotation, statistics 
generation, or counter updates.

A Simple Scheduled Event
To understand how scheduled events work, let’s consider a simple example: archiving 
old passenger data. Let’s suppose that a database administrator wishes to automatically 
move all passenger records for flights that are 30 days old out of the pax table and into a 
different archive table. A scheduled event makes this easy to do:

mysql> CREATE TABLE paxarchive LIKE pax; 
Query OK, 0 rows affected (0.03 sec) 
mysql> ALTER TABLE paxarchive ENGINE=ARCHIVE; 
Query OK, 0 rows affected (0.12 sec) 
Records: 0  Duplicates: 0  Warnings: 0 
 
mysql> DELIMITER // 
mysql> CREATE EVENT pax_day 
    -> ON SCHEDULE EVERY 1 DAY 
    -> STARTS '2009-01-14 22:45:00' ENABLE 
    -> DO 
    ->   BEGIN 
    ->     INSERT INTO paxarchive 
    ->       SELECT * FROM pax 
    ->       WHERE FlightDate <= 
    ->       DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
    ->     DELETE FROM pax 
    ->       WHERE FlightDate <= 
    ->       DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
    ->   END// 
Query OK, 0 rows affected (0.01 sec)

To define a scheduled event, MySQL offers the CREATE EVENT command. This 
command must be followed by the event name, the event schedule, an active/inactive 
flag, and the main body, which contains the SQL statements to be executed when the 
event fires.

ch07.indd   181 7/6/09   3:33:56 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 182	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 183

These components are illustrated in the previous example, which creates a scheduled  
event named paxarchive. The ON SCHEDULE EVERY 1 DAY clause in the event definition 
ensures that it is activated daily, while the STARTS clause specifies the event’s start date 
and time. The ENABLE keyword tells the system that this is an active event, while the DO 
clause contains the main body of the trigger; this can contain either a single SQL 
statement or (as in the previous example) multiple SQL statements enclosed within a 
BEGIN...END block.

Defining an event is not, however, sufficient to have it fire automatically. By default, 
MySQL’s event scheduling engine is deactivated and must be activated with the 
following command:

mysql> SET GLOBAL event_scheduler = ON; 
Query OK, 0 rows affected (0.38 sec)

This command starts the global event scheduling daemon, which periodically 
checks for scheduled events and runs them at the appropriate time.

As a result of these actions, MySQL will, on a daily basis, copy all passenger records 
that relate to flights 30 days in the past to the paxarchive table and then delete the same 
records from the pax table.

Note  To create a scheduled event, a user must have the EVENT privilege. To turn the global 
event scheduler on or off, a user must have the SUPER privilege. Privileges are discussed in 
greater detail in Chapter 11.

To modify a scheduled event, use the ALTER EVENT command and provide new 
parameters for the event. Here’s an example, which alters the previous event to run 
every two hours instead:

mysql> DELIMITER // 
mysql> ALTER EVENT pax_day 
    -> ON SCHEDULE EVERY 2 HOUR 
    -> STARTS '2009-01-14 22:45:00' ENABLE 
    -> DO 
    ->   BEGIN 
    ->     INSERT INTO paxarchive 
    ->       SELECT * FROM pax 
    ->       WHERE FlightDate <= 
    ->       DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
    ->     DELETE FROM pax 
    ->       WHERE FlightDate <= 
    ->       DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
    ->   END// 
Query OK, 0 rows affected (0.24 sec)

ch07.indd   182 7/6/09   3:33:56 PM



	 182	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 183

PART I
PART I

Here’s another example, which disables a specified event (disabled events will not 
fire at all):

mysql> ALTER EVENT pax_day DISABLE; 
Query OK, 0 rows affected (0.00 sec)

By default, once an event has completed, it is automatically removed from the event 
queue by the event scheduler. However, you can manually remove it at any time; use 
the DROP EVENT command with the event name as argument:

mysql> DROP EVENT pax_day; 
Query OK, 0 rows affected (0.03 sec)

Tip  To prevent an event from being automatically removed from the event queue once it is 
completed (for audit or other reasons), attach an ON COMPLETION PRESERVE clause to the 
CREATE EVENT command. 

Alternatively, to turn off all scheduled events, turn off the global scheduler, as 
shown:

mysql> SET GLOBAL event_scheduler = OFF; 
Query OK, 0 rows affected (0.38 sec)

To view the body of a specific event, use the SHOW CREATE EVENT command with 
the event name as argument. Here’s an example:

mysql> SHOW CREATE EVENT pax_day\G 
*************************** 1. row *************************** 
               Event: pax_day 
            sql_mode: STRICT_TRANS_TABLES 
           time_zone: SYSTEM 
        Create Event: CREATE EVENT `pax_day`  
ON SCHEDULE EVERY 1 DAY  
STARTS '2009-01-14 22:45:00' ON COMPLETION NOT PRESERVE  
ENABLE DO  
  BEGIN 
    INSERT INTO paxarchive 
      SELECT * FROM pax 
      WHERE FlightDate <= 
      DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
    DELETE FROM pax 
      WHERE FlightDate <= 
      DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
  END 
character_set_client: latin1 
collation_connection: latin1_swedish_ci 
  Database Collation: latin1_swedish_ci 
1 row in set (0.00 sec)

ch07.indd   183 7/6/09   3:33:56 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 184	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 185

To view a list of all events scheduled on the server, use the SHOW EVENTS command, 
as shown:

mysql> SHOW EVENTS\G 
*************************** 1. row ************************* 
                  Db: db1 
                Name: pax_day 
             Definer: root@localhost 
           Time zone: SYSTEM 
                Type: RECURRING 
          Execute at: NULL 
      Interval value: 1 
      Interval field: DAY 
              Starts: 2009-01-14 22:45:00 
                Ends: NULL 
              Status: ENABLED 
          Originator: 0 
character_set_client: latin1 
collation_connection: latin1_swedish_ci 
  Database Collation: latin1_swedish_ci 
1 row in set (0.00 sec)

Event Security
The CREATE EVENT command supports a DEFINER clause, which specifies the user 
account whose privileges should be considered when executing the event code. For the 
event to execute successfully, this user should have all the privileges necessary to 
perform the statements listed in the event body. By default, MySQL sets the DEFINER 
value to the user who created the trigger. 

Here’s an example:

mysql> DELIMITER // 
mysql> CREATE DEFINER = 'jack@example.com' 
    -> EVENT pax_day 
    -> ON SCHEDULE EVERY 1 DAY 
    -> STARTS '2009-01-14 22:45:00' ENABLE 
    -> DO 
    ->   BEGIN 
    ->     INSERT INTO paxarchive 
    ->       SELECT * FROM pax 
    ->       WHERE FlightDate <= 
    ->       DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
    ->     DELETE FROM pax 
    ->       WHERE FlightDate <= 
    ->       DATE_SUB(CURRENT_DATE(), INTERVAL 30 DAY); 
    ->   END// 
Query OK, 0 rows affected (0.01 sec)

ch07.indd   184 7/6/09   3:33:56 PM



	 184	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 185

PART I
PART I

Recurring Events
Let’s take a closer look at recurring events. As the previous section illustrated, a 
recurring event contains the EVERY clause in the event definition; this clause tells 
MySQL that the event is one that repeats “every XX time units.” The EVERY clause also 
contains the repeat interval—typically, this consists of a number and a keyword 
representing the time unit. Valid time units include YEAR, QUARTER, MONTH, DAY, HOUR, 
MINUTE, WEEK, and SECOND. 

Here’s an example, which checks the percentage of seats that have been booked for 
each flight every hour and logs flights that are more than 80 percent full:

mysql> DELIMITER // 
mysql> CREATE EVENT util_hour 
    -> ON SCHEDULE EVERY 1 HOUR ENABLE 
    -> DO 
    -> BEGIN 
    ->  DECLARE fid INT; 
    ->  DECLARE fdate DATE; 
    ->  DECLARE str TEXT DEFAULT ''; 
    ->  DECLARE util FLOAT; 
    ->  DECLARE c CURSOR FOR 
    ->   SELECT s.FlightID, s.FlightDate, 1-(SUM(s.CurrSeats) / 
    ->       (SELECT SUM(fc.MaxSeats) 
    ->       FROM flightclass AS fc 
    ->       WHERE fc.FlightID = s.FlightID 
    ->       GROUP BY FlightID)) 
    ->     AS u FROM stats AS s 
    ->     GROUP BY s.FlightID, s.FlightDate 
    ->     HAVING u > 0.80; 
    ->   OPEN c; 
    ->   l: LOOP 
    ->     FETCH c INTO fid,fdate,util; 
    ->     SET str = CONCAT('Flight # ', fid, ' on ', 
    ->       fdate, ": ", ROUND(util*100), '%'); 
    ->     INSERT INTO log (ByUser, Note, EventTime) 
    ->       VALUES (CURRENT_USER(), str, NOW()); 
    ->   END LOOP l; 
    ->   CLOSE c; 
    -> END// 
Query OK, 0 rows affected (0.00 sec)

Caution  Open-ended recurring events that write new data to a table and have no defined end 
time (like the previous example) are dangerous, because they could cause the target table to 
grow in size quite quickly, with no end in sight. Avoid using these as much as possible (the 
previous example is only illustrative and should not be used in a production environment), 
and if you must do so, always specify an end time and as many additional constraints as 
possible to limit the event’s action.

ch07.indd   185 7/6/09   3:33:56 PM



NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5

	 186	 P a r t  I :   U s a g e 	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 187

You can also configure the event to fire only within a certain time period by 
specifying optional STARTS and ENDS clauses, which contain the starting and ending 
times for the event. Here’s a revision of the previous example, which configures the 
event to fire only during a particular month:

mysql> DELIMITER // 
mysql> CREATE EVENT util_hour 
    -> ON SCHEDULE EVERY 1 HOUR 
    -> STARTS '2009-04-01 00:00:01' 
    -> ENDS '2009-04-30 23:59:01' 
    -> ENABLE 
    -> DO 
    -> BEGIN 
    ->  DECLARE fid INT; 
    ->  DECLARE fdate DATE; 
    ->  DECLARE str TEXT DEFAULT ''; 
    ->  DECLARE util FLOAT; 
    ->  DECLARE c CURSOR FOR 
    ->   SELECT s.FlightID, s.FlightDate, 1-(SUM(s.CurrSeats) / 
    ->       (SELECT SUM(fc.MaxSeats) 
    ->       FROM flightclass AS fc 
    ->       WHERE fc.FlightID = s.FlightID 
    ->       GROUP BY FlightID)) 
    ->     AS u FROM stats AS s 
    ->     GROUP BY s.FlightID, s.FlightDate 
    ->     HAVING u > 0.80; 
    ->   OPEN c; 
    ->   l: LOOP 
    ->     FETCH c INTO fid,fdate,util; 
    ->     SET str = CONCAT('Flight # ', fid, ' on ', 
    ->       fdate, ": ", ROUND(util*100), '%'); 
    ->     INSERT INTO log (ByUser, Note, EventTime) 
    ->       VALUES (CURRENT_USER(), str, NOW()); 
    ->   END LOOP l; 
    ->   CLOSE c; 
    -> END// 
Query OK, 0 rows affected (0.01 sec)

One-Off Events
Although MySQL’s event scheduler is great for setting up recurring events, it also 
supports events that only fire once, at a predefined time and date. To set up such an 
event, replace the EVERY clause in the CREATE EVENT statement with an AT clause that 
contains the date and time at which the event should fire. Here’s an example, which 
sets up an event to fire at 1:25 a.m. on April 1, 2009:

ch07.indd   186 7/6/09   3:33:56 PM



	 186	 P a r t  I :   U s a g e

NewProgramming_FLUFF/ MySQL Database Usage & Administration / Vaswani / 549-5 

PART I
	 C h a p t e r  7 :   U s i n g  T r i g g e r s  a n d  S c h e d u l e d  E v e n t s 	 187

PART I
PART I

mysql> CREATE EVENT log_onetime 
    -> ON SCHEDULE AT '2009-04-01 01:25' ENABLE 
    -> DO 
    -> INSERT INTO log (ByUser, Note, EventTime) 
    -> VALUES (CURRENT_USER(), 'Updating all accounts', NOW()); 
Query OK, 0 rows affected (0.50 sec)

Tip  To force an event to fire at the instant it is created, use the NOW() function in the AT 
clause instead of a timestamp.

Summary
This chapter focused on database automation, explaining how database triggers and 
scheduled events can be used to easily perform operations that would otherwise need 
separate application-level workflows and/or integration with scheduling agents such 
as cron. Utilizing simple applications, it showed you how to construct various types of 
triggers, schedule events for either one-time or repeated execution, and build in 
complex programming logic using the conditional tests, loops, and cursors discussed in 
the previous chapter.

To learn more about the topics discussed in this chapter, consider visiting the 
following links:

Triggers, at http://dev.mysql.com/doc/refman/5.1/en/create-trigger.html and •	
http://forge.mysql.com/wiki/Triggers

Scheduled events, at http://dev.mysql.com/doc/refman/5.1/en/events-overview •	
.html

Key limitations on triggers and scheduled events, at http://dev.mysql.com/•	
doc/refman/5.1/en/stored-program-restrictions.html

A MySQL forum discussion of raising errors inside triggers, at http://forums •	
.mysql.com/read.php?99,55108,55108#msg-55108 and http://rpbouman 
.blogspot.com/2005/11/using-udf-to-raise-errors-from-inside.html

ch07.indd   187 7/6/09   3:33:56 PM



ch07.indd   188 7/6/09   3:33:56 PM




